On a Generalization of the Gallai-Roy-Vitaver Theorem and Mathematical Programming Models for the Bandwidth Coloring Problem

نویسندگان

  • Bernard Gendron
  • Alain Hertz
  • Patrick St-Louis
چکیده

We consider the bandwidth coloring problem, a generalization of the well-known graph coloring problem. For the latter problem, a classical theorem, discovered independently by Gallai, Roy and Vitaver, states that the chromatic number of a graph is bounded from above by the number of vertices in the longest elementary path in any directed graph derived by orienting all edges in the graph. We generalize this result to the bandwidth coloring problem. Two proofs are given, a simple one and a more complex that is based on a series of equivalent mathematical programming models. These formulations can motivate the development of various solution algorithms for the bandwidth coloring problem. Résumé Nous considérons le problème de la coloration par bande, une généralisation de la coloration usuelle des sommets d’un graphe. Pour ce dernier, un théorème classique, énoncé indépendamment par Gallai, Roy et Vitaver, démontre que le nombre chromatique d’un graphe est borné supérieurement par le nombre de sommets sur le plus long chemin élémentaire dans un graphe orienté obtenu en choisissant une orientation pour chaque arête du graphe. Nous généralisons ce résultat au problème de la coloration par bande. Nous donnons deux preuves de ce résultat, une simple et une plus complexe qui est basée sur l’équivalence entre divers modèles de programmation mathématique pour la coloration par bande. Ces divers modèles peuvent motiver le développement de nouveaux algorithmes pour la résolution du problème de la coloration par bande. Les Cahiers du GERAD G–2007–22 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On edge orienting methods for graph coloring

We consider the problem of orienting the edges of a graph so that the length of a longest path in the resulting digraph is minimum. As shown by Gallai, Roy and Vitaver, this edge orienting problem is equivalent to finding the chromatic number of a graph. We study various properties of edge orienting methods in the context of local search for graph coloring. We then exploit these properties to d...

متن کامل

Contributions to the theory of graphic sequences

Zverovich, I.E. and V.E. Zverovich, Contributions to the theory of graphic sequences, Discrete Mathematics 105 (1992) 293-303. In this article we present a new version of the ErdGs-Gallai theorem concerning graphicness of the degree sequences. The best conditions of all known on the reduction of the number of Erdiis-Gallai inequalities are given. Moreover, we prove a criterion of the bipartite ...

متن کامل

On the Garden Path: An Economic Perspective on Prevention and Control Policies for an Invasive Species

Economists currently use the term invasive species to denote species that arrive in a new ecological setting and spread, creating ecological and economic damages. The problem facing invasive policy managers is to select strategies that minimize the overall invasive species-related costs over time, including prevention and control expenditures and damages. This article aims to highlight the conn...

متن کامل

Presentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem

The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...

متن کامل

A remark concerning graphical sequences

In “A note on a theorem of Erdös & Gallai” ([6]) one identifies the nonredundant inequalities in a characterization of graphical sequences. We explain how this result may be obtained directly from a simple geometrical observation involving weak majorization. A sequence of positive integers d1, d2, . . . , dp is called graphical if it is the degree sequence of a graph, i.e., there is a graph who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007